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INTRODUCTION
Transcriptional regulation of gene expression is an essential cellular process 

that is arranged by transcription factors (TFs), non-coding RNAs (miRNAs and 
lncRNAs), and their target genes through a variety of mechanisms (Cao et al., 
2015). Gene regulatory networks (GRNs) studies reveal complex life events in terms 
of gene interaction, an important area of research in system biology (Emmert-
Streib et al., 2014). On the last years, with the development of high-throughput 
screening techniques and next generation sequencing (NGS) technologies, lots 
of data on gene expressions and their regulations were accumulated, and several 
methods have been developed to construct GRNs. These regulatory data are used 
in medicine and molecular biology applications such as identification of genetic 
diseases, identification of metabolic pathways, the discovery of new drugs, reducing 
side-effects of treatments, the study of expression patterns of genes with unknown 
function and gain ideas about their performance. 

Here we aim to provide an extensive review of the transcriptional regulatory 
information in various databases, the methods used in network reconstruction, 
and present transcriptional regulatory networks of Homo sapiens in literature. In 
addition, we will demonstrate new insights on a comprehensive, genome-scale, 
human transcriptional regulatory network.

DATA AVAILABILITY
Pairwise data on three distinct regulatory relationships (i.e., miRNA-gene, 

miRNA-TF, and TF-gene interactions) at transcriptional and post-transcriptional 
regulation of gene expression in human are available in several publicly available 
databases (Table 1). The majority of the databases (i.e., Pazar, Trrust, Tfacts, 
HTRIdb, mir2disease, miRTarbase, TransMir, miRecords) present experimental 
data, whereas computational predictions are also stored in several databases, 
including iRegulon, miRWalk, Targetscan and miRDB. Furthermore, a few 
databases, such as Regnetwork and Tfacts, integrate regulatory data from different 
sources with computational and/or experimental origin. 
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Table 1. Lists of databases

Database Name
(Web Link)

# of 
Interactions

Regulatory 
relationships

Confidence 
identifier 

References

Regnetwork (www.
regnetworkweb.org)

368573 TF/gene/
miRNA

experimentally 
validated /
computational 
predictions

Liu et al. 2015

Pazar (www.pazar.
info)

9472 TF/gene experimentally 
validated 

Portales-
Casamar et al. 
2008 

Trrust (www.
grnpedia.org/trrust/)

9398 TF/gene experimentally 
validated 

Han et al. 2017

Tfacts (www.tfacts.
org)

4319 TF/gene experimentally 
validated 

Essaghir et al. 
2010

HTRIdb (www.lbbc.
ibb.unesp.br/htri.)

52467 TF/gene experimentally 
validated 

Bovolenta et al. 
2012

iRegulon (Cytoscape 
plug-in)

928864 TF/gene computational 
predictions

Janky et al. 
2014

mir2disease (www.
mir2disease.org)

809 miRNA/ gene experimentally 
validated 

Jiang et al. 2008

Targetscan (www.
targetscan.org)

225210 miRNA/gene computational 
predictions

Agarwal et al. 
2015

miRTarBase 
(mirtarbase.mbc.nctu.
edu.tw)

502652 miRNA/gene experimentally 
validated 

Chou et al. 
2018

TransMir (www.
cuilab.cn/transmir)

649 TF/miRNA experimentally 
validated 

Wang et al. 
2009

miRecords (c1.
accurascience.com/
miRecords/)

2115 miRNA/gene experimentally 
validated 

Xiao et al. 2008

miRWalk (zmf.umm.
uni-heidelberg.de/
apps/zmf/mirwalk2/)

825914 miRNA/gene computational 
predictions

Dweep et al. 
2011

miRDB (www.mirdb.
org)

2100000 miRNA/gene computational 
predictions

Wong & Wang, 
2014

METHODS USED IN NETWORK RECONSTRUCTION 
Several methods employing gene expression data have been developed to 

construct human GRNs so far. The pioneer studies in this field utilized microarray 
and promoter sequence data. For instance, Computational Ascertainment of 
Regulatory Relationships Inferred from Expression (CARRIE) is a web server that 
utilizes microarray and promoter sequence data for prediction of significant TF-
target gene interactions by reconstructing GRNs in response to a specific stimulus 
(Haverty et al., 2004). Similarly, Algorithm for the Reconstruction of Accurate 
Cellular Networks (ARACNE), which is an information theoretic algorithm for 
the reverse engineering of transcriptional networks from microarray data, was 
initially designed for reconstruction of human transcriptional network for B 
cell malignancies (Margolin et al., 2006). The ARACNE algorithm computes 
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pairwise mutual information between TFs and potential target genes and tests the 
significance of these interactions. 

Besides gene expression data, chromatin immunoprecipitation coupled 
sequencing (ChIP-Seq) data was also employed to construct GRNs in the following 
years. For instance, the ChIP-Array was designed as a web server that integrates 
ChIP-Seq and gene expression data to identify direct and indirect target genes 
regulated by a TF of interest and to help functional characterization of a TF (Qin et 
al., 2011). The another reconstructing GRN technique that uses Chip-seq data is an 
integrative method that possesses three major types of regulatory interactions: TF-
gene, TF-miRNA and miRNA-gene (Cheng et al., 2011). Target genes and target 
miRNAs are inferred by using RNA-Seq profiles. Cscan is another web server that 
uses a collection of different ChIP-Seq experiments performed on TFs, histone 
modifications, RNA polymerases and others to identify putative common regulators 
in a number of genes and to assess their transcriptional and epigenetic profiles 
(Zambelli et al., 2012). Similarly, to unravel hierarchical interactions at different 
regulatory levels (i.e., interrelationships among TFs, epigenetic modifications, and 
genes), Guan and coworkers (2014a) proposed the constructing multilevel gene 
regulatory networks (CMGRN) approach and presented as an integrative web 
server to construct hierarchical GRN structures. It enables biologists to analyze 
standard formatted data at ChIP-seq and gene expression levels without the much 
need for bioinformatics skills. More recently, disease-specific transcriptomic and 
epigenomic data are integrated to construct disease-relevant GRN for identifying 
non-coding risk variants (Gao et al., 2018). The constructed GRN consists of EP 
edges representing interactions between enhancers and target genes, and also FI 
edges representing the functional associations between target genes. 

Guan and colleagues (2014b) reconstructed a post-translational hierarchical 
gene regulatory network (PTHGRN) model that aims to unravel relationships 
among post-translational modifications, TFs, epigenetic modifications and gene 
expression. Integrating protein–protein interactions (PPIs), ChIP-seq and gene 
expression data, it is possible to generate and score all possible interactions of 
protein–TF and TF/epigenetic modification-gene through the PTHGRN web 
server in order to capture essential regulation features. Another GRN construction 
approach included TF binding sites (TFBS) and PPIs among TFs to derive GRNs 
from mRNA expression profiles exposed to genetic perturbations by use of a 
Bayesian variable selection (BVS) algorithm (Santra, 2014). The main hypothesis 
behind this approach was that integrating PPIs among TFs with TFBS data 
increases the predictive power of the inference process, especially in a variable 
selection setting. This was demonstrated by inferring a liver-specific transcription 
regulatory network and the gene regulation program of human breast epithelium, 
and evaluating the accuracy of the inferred networks based on known interactions. 

Considering the role of epigenetic regulations and post-transcriptional 
regulators such as non-coding RNAs, data at post-transcriptional level was 
also considered in reconstruction strategies in recent years. For instance, 
transcriptional, post-transcriptional and epigenetic data were integrated to 
identify specific miRNA-regulated transcription factors that explain the impact of 
miRNA perturbation on gene expression (Gosline et al., 2016). The IntegraMiR 
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aims to predict specific types of deregulated miRNA/TF-mediated regulatory 
mechanisms and networks that appear in a statistically over-represented manner 
in GRNs at the transcriptional, post-transcriptional and signaling levels (Afshar et 
al., 2014). For this purpose, it utilizes mRNA/miRNA expression data, sequence-
based miRNA-target information, known information about mRNA and miRNA 
targets of TFs available in existing databases, certain three-node motifs in GRNs, 
and known molecular subtyping information available with gene expression data. 
MAGIA is another web server that uses miRNA and gene expression data to 
infer specific targets of miRNAs and TFs by reconstructing post-transcriptional 
regulatory networks (Bisognin et al., 2012). Very recently, Chiu and coworkers 
(2018) presented Cupid, which is an integrative method that uses sequence based 
data and RNA/miRNA expression analysis to infer potential miRNA binding sites 
on target gene and associated competitive endogenenous RNA interactions (Chiu 
et al., 2018).

The Regulatory Network Enrichment Analysis (RNEA) tool is also based on 
a collection of regulatory interactions compiled from manually curated databases 
(Chouvardas et al., 2016). RNEA uses gene expression data to find differentially 
expressed genes, combines prior knowledge with standard statistical methods for 
the inference of active regulators, miRNAs and functional categories to construct 
a reference network of interactions, and then uses enrichment analysis coupled 
with a two-level hierarchical parsing of the network to infer the most relevant 
subnetwork (i.e., GRN topology) for a given experimental setting. Besides RNEA, 
several other methods considered topological features in GRN construction. 
For instance, Active Protein-Gene (APG) network model is designed to reveal 
transcriptional regulations among TFs and target genes through integrating both 
TF upstream-regulation and downstream-regulation high-throughput data (Wang 
et al., 2013). More recently, Grechkin and co-workers proposed a computational 
framework, Differential Sparse Regulatory Network (DISCERN), which allows to 
identify informative topological changes in GRNs inferred on the basis of mRNA 
expression datasets within distinct biological states. Two expression datasets are 
taken as input by DISCERN: an expression dataset of diseased tissues from patients 
with a disease of interest and another expression dataset from matching normal 
tissues. Comparing distinct regulator connectivity in the inferred GRNs for the 
disease and normal conditions, DISCERN estimates the extent to which each gene 
is perturbed (Grechkin et al., 2016). 

Although gene regulation is a dynamic process, methods employing time course 
expression data to construct GRNs are quite limited in literature. The Bayesian Gene 
Regulation Model Inference (BGRMI) approach relies on the principles of Bayesian 
Model Averaging (BMA) for inferring GRNs from time course gene expression 
data (Martinez et al., 2016). BGRMI uses discretized ordinary differential equation 
based mathematical models to formulate the interactions between each gene and 
its regulators. It formulates the rate of change in a gene’s expression as a function 
of the expressions of its regulators, takes basal expression and self-regulation into 
account.
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FUTURE PERSPECTIVES 
Despite several construction efforts in the last decade (Shalgi et al., 2007; Qiu 

et al., 2010; Chen et al., 2011), still a comprehensive, genome-scale, generic human 
transcriptional regulatory network is not available. Very recently, we set out to 
construct a comprehensive transcriptional and post-transcriptional GRN of Homo 
sapiens consisting of experimentally verified regulatory information on miRNAs, 
TFs, and their target genes (Gov & Arga, 2016). On the other hand, considering the 
rapid accumulation of data from state-of-the-art and frequent updates in databases, 
automatic or semi-automatic tools and web servers are needed for construction 
of a comprehensive transcriptional and post-transcriptional human GRN. In 
addition, these tools or servers should be able to (i) integrate data from genomics, 
epigenomics, transcriptomics, and proteomics levels, (ii) take into consideration 
regulatory information for distinct regulators (including TFs, miRNAs and 
lncRNAs) and epigenetic factors, and (iii) possess user friendly interface reducing 
the need for bioinformatics skills.

GRNs are needed in systems biomedicine applications such as identification of 
efficient systems biomarkers for diagnosis and prognosis of diseases (Gov & Arga, 
2017; Turanli et al., 2017a; Sevimoglu et al., 2018), the discovery of new drugs or 
drug repositioning (Turanli & Arga, 2017; Turanli et al., 2017b), and identification 
of molecular mechanisms of complex diseases (Karagoz et al., 2016; Kori et al., 
2016; Calimlioglu et al., 2015; Karagoz et al., 2015). However, this type of GRNs 
are available for limited number of diseases, such as schizophrenia (Guo et al., 
2010), glioblastoma (Sun et al., 2012), and a few cancers (Yu et al., 2012; Sengupta 
& Bandyopadhyay, 2013; Gov & Arga, 2016).  In addition, tissue or process-specific 
GRNs are not existent in literature within our knowledge.  Further efforts are 
needed to develop methods in construction of disease, tissue, and process-specific 
GRNs. 
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